
The Numerit-GSL Interface Package

User's Guide

Copyright © 2007 KEDMI Scientific Computing

Introduction
The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It is
free under the GNU General Public License. The library provides a wide range of
mathematical routines and includes over 1000 functions in total.
The Numerit-GSL Interface Package includes a Numerit module “gsl-interface.num” that
allows you to use the Gnu Scientific Library in Numerit right away (provided you have
obtained the GSL Dynamic Link Library (DLL); see below “Getting the GSL library”). The
module includes more than 1400 Numerit declarations of GSL functions and more than 100
Numerit declarations of GSL variables that give you instant access to GSL from Numerit. The
declarations are divided into categories according to the GSL Reference Manual. These
categories include:

Polynomial evaluation and roots
Special functions
Linear Algebra
Eigensystems
Fast Fourier Transforms
Quadratures
Random Numbers
Quasi-Random Sequences
Statistics
Histograms
Monte-Carlo Integration
Simulated Annealing
Differential Equations
Interpolation
Numerical Differentiation
Chebyshev Approximation
Discrete Hankel Transforms
Root Finding
Minimization
Least-Squares Fitting
Discrete Wavelet Transforms
And more...

1

http://www.gnu.org/software/gsl/
http://www.gnu.org/copyleft/gpl.html

In addition, the package contains a collection of Numerit commented example programs that
cover all the topics in the GSL Reference Manual. These programs are Numerit
implementations of the C examples that are found in the reference manual. Besides
demonstrating the functions that are described in the manual, the programs can be used as
starting points to your own programs.
The package also contains a collection of Dynamic Link Libraries (DLLs) with utilities that
allow you to access GSL data objects that are not supported by Numerit. For example: copy
GSL vectors and matrices from/to Numerit vectors and matrices, access the GSL integration
workspace structure, copy null-terminated strings to Numerit strings, etc. Besides the
usefulness of the utilities themselves, they can be used as examples to creating your own
DLLs, as they are delivered with full source code and instructions (below) how to compile
them to DLLs using the Borland free C++ compiler.
Another useful DLL in the package provides a simple but powerful mechanism to allow
handling of GSL errors in Numerit. With this mechanism any error that is issued by a GSL
function invokes Numerit's error handler (see “Error handling”).

The Numerit-GSL Interface Package contents
The Numerit-GSL Interface Package - User's Guide.pdf (this file)
gsl-interface.num – the Numerit-GSL interface module
gsl-example-xxx.num – Numerit example programs (35 files)
num_dllutil_xxx.dll – DLLs with various utilities (7 files)
num_dllutil_xxx.cpp – source code of the above utilities (7 files)
num_dllutil_xxx.rsp – response files for compiling the above utilities (7 files)
num_tsp.dll – A DLL for the Simulated Annealing example program
num_tsp.cpp – source code of num_tsp.dll
num_tsp.rsp – response file for compiling num_tsp.cpp
license.txt - The Numerit-GSL Interface Package License Agreement
Note: The source code files and response files are in the folder “Numerit-GSL utilities
source”.

Installation
1. Extract the Numerit-GSL Interface Package files into any directory of your choice.
2. Copy the GSL library files (see below): libgsl.dll and libgslcblas.dll to the same directory.

2

Getting the GSL library
The GSL library can be downloaded from SourceForge.net:
http://gnuwin32.sourceforge.net/packages/gsl.htm.
The DLLs are found in the Binaries component:
http://gnuwin32.sourceforge.net/downlinks/gsl-bin-zip.php.
The manual is in the Documentation component:
http://gnuwin32.sourceforge.net/downlinks/gsl-doc-zip.php.

These components come as zip files so you need to open the zip files and extract the files that
you need. From the Binaries file (gsl-1.8-bin.zip) you need to extract two DLLs - libgsl.dll and
libgslcblas.dll.
From the Documentation file (gsl-1.8-doc.zip) you should extract the Reference Manual either
as a PDF file (gsl-ref.pdf), or as a Help file (gsl-ref.chm or gsl-ref.hlp), or as a HTML file (gsl-
ref.html).

Using the Numerit-GSL interface module
The Numerit-GSL interface module is intended to be used with Numerit Pro (version 1.7.106
and higher). However, you can still use it even if you are a user of the standard edition (see
below).
If you are a Numerit Pro user: after installation just open any of the example programs and
test it. Build your own programs similar to the examples. The simplest way is to start with an
example and modify it according to your needs. Note that if you start your program from
scratch you need to open the “Modules” window and add the module “gsl-interface.num”.
If you are a Numerit (standard edition) user: Open the module as a normal Numerit
program and copy its content to the beginning of your program. Note that you need to do so
for each of your programs that call functions from GSL. You can, of course, copy only those
declarations that are relevant to your application.

Note: each program should start with a call to gsl.main() that initializes the module, and
should end with a call to TerminateGSL() that restores GSL's error handler and frees all DLLs
(see the examples).

3

http://gnuwin32.sourceforge.net/downlinks/gsl-doc-zip.php
http://gnuwin32.sourceforge.net/downlinks/gsl-doc-zip.php
http://gnuwin32.sourceforge.net/downlinks/gsl-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/gsl-bin-zip.php
http://gnuwin32.sourceforge.net/packages/gsl.htm

The utilities
The Numerit built-in DLL interface converts C variables (including arrays) to Numerit
variables and back. However, there are some GSL objects that cannot be converted in a simple
way since they have no equivalents in Numerit. That's why we have created a set of utilities (in
DLLs) that allow you to access these objects from Numerit. The function declarations for all
these utilities are included in the Numerit-GSL interface module.

These utilities are:

String utilities (in num_dllutil_str.dll)
num_str_len: returns the length of a null-terminated string
num_str_char: returns the ASCII value of the i'th character of a null-terminated string
num_str_copy: copies a null-terminated string to a Numerit string
num_strn_copy: copies n characters from a null-terminated string to a Numerit string

Vector/Matrix utilities (in num_dllutil_vecmat.dll)
num_vec_copy_g2n: copies a 'double' vector from GSL to Numerit
num_vec_int_copy_g2n: copies a 'int' vector from GSL to Numerit
num_vec_complex_copy_g2n: copies a 'complex' vector from GSL to Numerit
num_vec_copy_n2g: copies a 'double' vector from Numerit to GSL
num_vec_int_copy_n2g: copies a 'int' vector from Numerit to GSL
num_vec_complex_copy_n2g: copies a 'complex' vector from Numerit to GSL
num_mat_copy_g2n: copies a 'double' matrix from GSL to Numerit
num_mat_int_copy_g2n: copies a 'int' matrix from GSL to Numerit
num_mat_complex_copy_g2n: copies a 'complex' matrix from GSL to Numerit
num_mat_copy_n2g: copies a 'double' matrix from Numerit to GSL
num_mat_int_copy_n2g: copies a 'int' matrix from Numerit to GSL
num_mat_complex_copy_n2g: copies a 'complex' matrix from Numerit to GSL

Integration utilities (in num_dllutil_integration.dll)
Get members of gsl_integration_workspace:
num_integration_limit: returns the value of 'limit'
num_integration_size: returns the value of 'size'

Monte-Carlo Integration utilities (in num_dllutil_monte.dll)
Get members of gsl_monte_miser_state:
num_monte_miser_estimate_frac: returns the value of 'estimate_frac'
num_monte_miser_min_calls: returns the value of 'min_calls'
num_monte_miser_min_calls_per_bisection: returns the value of 'min_calls_per_bisection'
num_monte_miser_alpha: returns the value of 'alpha'
num_monte_miser_dither: returns the value of 'dither'
Set members of gsl_monte_miser_state:
num_monte_miser_estimate_frac_set: sets the value of 'estimate_frac'
num_monte_miser_min_calls_set: sets the value of 'min_calls'
num_monte_miser_min_calls_per_bisection_set: sets the value of 'min_calls_per_bisection'

4

num_monte_miser_alpha_set: sets the value of 'alpha'
num_monte_miser_dither_set: sets the value of 'dither'
Get members of gsl_monte_vegas_state:
num_monte_vegas_result: returns the value of 'result'
num_monte_vegas_sigma: returns the value of 'sigma'
num_monte_vegas_chisq: returns the value of 'chisq'
num_monte_vegas_alpha: returns the value of 'alpha'
num_monte_vegas_iterations: returns the value of 'iterations'
num_monte_vegas_stage: returns the value of 'stage'
num_monte_vegas_mode: returns the value of 'mode'
Set members of gsl_monte_vegas_state:
num_monte_vegas_result_set: sets the value of 'result'
num_monte_vegas_sigma_set: sets the value of 'sigma'
num_monte_vegas_chisq_set: sets the value of 'chisq'
num_monte_vegas_alpha_set: sets the value of 'alpha'
num_monte_vegas_iterations_set: sets the value of 'iterations'
num_monte_vegas_stage_set: sets the value of 'stage'
num_monte_vegas_mode_set: sets the value of 'mode'

Series Acceleration utilities (in num_dllutil_accel.dll)
Get members of gsl_sum_levin_u_workspace:
num_accel_terms_used: returns the value of 'terms_used'
num_accel_sum_plain: returns the value of 'sum_plain'

Multifit utilities (in num_dllutil_multifit.dll)
Get members of gsl_multifit_fsolver:
ptr num_multifit_fsolver_x: returns 'x' (pointer to gsl_vector)
ptr num_multifit_fsolver_f: returns 'f' (pointer to gsl_vector)
ptr num_multifit_fsolver_dx: returns 'dx' (pointer to gsl_vector)
Get members of gsl_multifit_fdfsolver:
ptr num_multifit_fdfsolver_x: returns 'x' (pointer to gsl_vector)
ptr num_multifit_fdfsolver_f: returns 'f' (pointer to gsl_vector)
ptr num_multifit_fdfsolver_dx: returns 'dx' (pointer to gsl_vector)
ptr num_multifit_fdfsolver_J: returns 'J' (pointer to gsl_matrix)

5

Error handling
You can send all GSL errors to Numerit's internal error handler (recommended). To enable
this you need to set the flag 'EnableNumeritErrorHandler' in the Numerit-GSL interface
module to TRUE (currently set as the default value). To disable error handling set this flag to
FALSE.
When the flag is set to TRUE, the GSL error handling is redirected to the function
'num_dll_error' that is found in 'num_dllutil_err.dll'. This redirection is done by the Numerit-
GSL interface module itself, when it is initialized, by calling the GSL function
'gsl_set_error_handler'. In this mode, whenever GSL calls the error handler it actually calls
'num_dll_error' which sends the message to Numerit. Note that GSL's default error handler
should never be left in effect since it aborts Numerit when called, so setting the flag to FALSE
actually disables GSL error handling (the interface module calls the GSL function
'gsl_set_error_handler_off').
If you don't enable error handling and the GSL function you call returns an error code, you
can call the function 'ShowGSLErr' (defined in the Numerit-GSL interface module) to report
the error.
Note that calling the Numerit function TerminateGSL() at the end of your program also calls
the function restore_gsl_error_handler() which restores the original GSL error handler.

6

The examples
We have made an effort to cover most of the GSL function categories with examples. In most
cases we followed the examples that appear in the GSL reference manual.

The example programs are:

Function Category Numerit program
Elementary Functions
Small Integer Powers
Complex Numbers
Polynomials
Special Functions
Vectors
Matrices
Permutations
Combinations
Sorting
Linear Algebra
Eigensystems
Fast Fourier Transforms
Numerical Integration
Random Number Generation
Quasi-Random Sequences
Random Number Distributions
Statistics
Histograms
Monte-Carlo Integration
Simulated Annealing - one dimensional
Simulated Annealing - traveling salesman
Ordinary Differential Equations
Interpolation
Numerical Differentiation
Chebyshev Approximations
Series Acceleration
Wavelet Transforms
Discrete Hankel Transforms
One dimensional Root-Finding
One dimensional Minimization
Multidimensional Root-Finding
Multidimensional Minimization
Least-Squares Fitting
Nonlinear Least-Squares Fitting

gsl-example-elementary.num
gsl-example-small powers.num
gsl-example-complex.num
gsl-example-polynomial.num
gsl-example-special functions.num
gsl-example-vector.num
gsl-example-matrix.num
gsl-example-permutations.num
gsl-example-combinations.num
gsl-example-sorting.num
gsl-example-linear algebra.num
gsl-example-eigensys.num
gsl-example-fft.num
gsl-example-integration.num
gsl-example-rng.num
gsl-example-qrng.num
gsl-example-ran.num
gsl-example-stats.num
gsl-example-histogram.num
gsl-example-monte.num
gsl-example-siman-1d.num
gsl-example-siman-tsp.num
gsl-example-ode.num
gsl-example-interpolation.num
gsl-example-diff.num
gsl-example-cheb.num
gsl-example-accel.num
gsl-example-wavelet.num
gsl-example-dht.num
gsl-example-root.num
gsl-example-min.num
gsl-example-multiroot.num
gsl-example-multimin.num
gsl-example-fit.num
gsl-example-nlfit.num

7

Creating your own Dynamic Link Library (DLL) using the free Borland C++ compiler
The instructions in this section are provided as a service to the users of the Numerit-GSL
package. KEDMI Scientific Computing does not give any guarantee regarding the procedure
described here and does not provide support for it.
Note: this section assumes that you have basic knowledge in C programming.

Borland compiler
In order to create a DLL you first need to download the free Borland C++ compiler. This
involves the following steps:
1. Go to the Download page.
2. Click on the C++ Compiler 5.5 link.
3. Download the compiler (a 8.5 Mb installer file).
4. Run the installer.

GSL header
If you want to refer to GSL objects in your DLL you'll also need the GSL header files that are
found in the Developer files component of the GSL package. This can be downloaded from:
http://gnuwin32.sourceforge.net/downlinks/gsl-lib-zip.php.

Building a DLL
To build a DLL you need to create two files: 1. A C source file that contains the functions you
want to call from another application (e.g. from Numerit). 2. A response file that instructs the
compiler to create the DLL.
For example, lets see one of the DLLs that are included in the package: num_tsp.dll (used in
the Simulated Annealing example program). The C source file is “num_tsp.cpp” which
contains four functions. It is written in C++ but does not use any object oriented features of
C++ so it could easily be written in plain C.
The instruction extern "C" at the top of the file “num_tsp.cpp” makes sure that the functions
are linked according to the C linkage conventions.
Each function that needs to be called from Numerit (or from any other application) should be
exported. This is done by the declaration __declspec(dllexport) that precedes each such
function.
The response file for creating the DLL is “num_tsp.rsp”. It includes the following instructions
to the compiler:
-WD
-ff
-O2
-Ic:\bc55\include
-Lc:\bc55\lib
-enum_tsp
num_tsp.cpp
The first line tells the compiler to create a DLL. The second line sets the compiler's “floating
point” flag. The third line sets the optimization flag. The fourth line specifies the path to the
compiler's “include” directory (here we assumed that the Borland compiler was installed in the
directory c:\bc55). The fifth line specifies the path to the compiler's “lib” directory. The sixth
line specifies the DLL name. The seventh line specifies the name of the source file.

8

http://downloads.embarcadero.com/free/c_builder
http://gnuwin32.sourceforge.net/downlinks/gsl-lib-zip.php

To actually generate the DLL you need to open a command-line window (command prompt)
and set the path to the compiler's “bin” directory (e.g., path c:\bc55\bin). Make sure you are in
the same directory where the C program and the response file reside and type:
bcc32 @num_tsp.rsp
at the command line, press Enter and you are done (you should, of course, replace “num_tsp”
by the name of your dynamic link library). The DLL will be created in the same directory. In
order to use it with Numerit you need to declare it in your Numerit program (see the Numerit
help topic for the instruction 'dll').

Copyright notice
The Gnu Scientific Library is copyright of Free Software Foundation, Inc., and is free under
the terms of the GNU General Public License (GPL).

The Numerit-GSL Interface Package is copyright of KEDMI Scientific Computing. You can
use the modules and documentation in the package on a single computer. You cannot
reproduce or distribute the package or any part of it either in source code form or in compiled
code form or in any other form under any circumstances without a specific written permission
of KEDMI Scientific Computing.

Disclaimer of warranty
The Numerit-GSL Interface Package is provided on an "as is" basis without warranty of any
kind, either express or implied, including, without limitation, that of fitness for a particular
purpose.

Limitation of liability
IN NO EVENT WILL KEDMI SCIENTIFIC COMPUTING BE LIABLE FOR ANY DAMAGES
INCLUDING ANY LOST PROFITS, DATA OR INFORMATION, OR OTHER INDIRECT,
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE NUMERIT-GSL PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

9

http://www.gnu.org/copyleft/gpl.html

